Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 2 additions & 8 deletions fastdeploy/input/preprocess.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,15 +71,9 @@ def create_processor(self):
"""
reasoning_parser_obj = None
tool_parser_obj = None
try:
from fastdeploy.plugins.reasoning_parser import (
load_reasoning_parser_plugins,
)

reasoning_parser_obj = load_reasoning_parser_plugins()
except:
if self.reasoning_parser:
reasoning_parser_obj = ReasoningParserManager.get_reasoning_parser(self.reasoning_parser)
if self.reasoning_parser:
reasoning_parser_obj = ReasoningParserManager.get_reasoning_parser(self.reasoning_parser)
if self.tool_parser:
tool_parser_obj = ToolParserManager.get_tool_parser(self.tool_parser)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -14,14 +14,16 @@
# limitations under the License.
"""

import os
from contextlib import contextmanager
from dataclasses import dataclass
from typing import Callable, Dict, Optional
from dataclasses import dataclass, field
from typing import Callable, Dict, List, Optional

import paddle.jit.dy2static.utils as jit_utils
import paddle.nn.layer
from paddle.device.cuda import graphs

from fastdeploy import envs
from fastdeploy.config import FDConfig
from fastdeploy.distributed.communication import capture_custom_allreduce
from fastdeploy.utils import get_logger
Expand All @@ -46,8 +48,8 @@ class ConcreteSizeEntry:
num_finished_warmup: int = 0
# Captured cuda graph object corresponding to the current real shape
cuda_graph: Optional[graphs.CUDAGraph] = None
# Output buffer of cudagraph
output_buffer: Optional[paddle.Tensor] = None
# Output buffers of cudagraph
output_buffers: List[Optional[paddle.Tensor]] = field(default_factory=list)


class Dy2StCudaGraphManager:
Expand Down Expand Up @@ -130,9 +132,9 @@ def run_static_model(self, entry: ConcreteSizeEntry, **kwargs):
with self.cuda_graph_manager.run_impl_guard():
return entry.runnable(**kwargs)

def __call__(self, **kwargs):
def __call__(self, **kwargs) -> List[paddle.Tensor] | paddle.Tensor:
# Get real shape(all num tokens)
ids_remove_padding: paddle.Tensor = kwargs["ids_remove_padding"]
ids_remove_padding: paddle.Tensor = kwargs["forward_meta"].ids_remove_padding
real_shape = ids_remove_padding.shape[0]
padding_real_shape = self.real_shape_to_captured_size[real_shape]
logger.debug(
Expand Down Expand Up @@ -173,14 +175,22 @@ def __call__(self, **kwargs):
# Capture
with capture_custom_allreduce():
new_grpah.capture_begin()
output = entry.runnable(**kwargs)
outputs = entry.runnable(**kwargs)
if isinstance(outputs, paddle.Tensor):
assert outputs is not None
outputs = [outputs]
new_grpah.capture_end()

# Store output buffer
entry.cuda_graph = new_grpah
entry.output_buffer = paddle.zeros_like(output)
output._share_buffer_to(entry.output_buffer)
output._clear
for output in outputs:
if output is not None:
output_buffer = paddle.zeros_like(output)
output._share_buffer_to(output_buffer)
output._clear
entry.output_buffers.append(output_buffer)
else:
entry.output_buffers.append(None)

paddle.device.synchronize()

Expand All @@ -191,7 +201,9 @@ def __call__(self, **kwargs):
# Replay
entry.cuda_graph.replay()
logger.debug(f"[CUDA GRAPH] CUDAGraph replayed for real shape {padding_real_shape}")
return entry.output_buffer
if len(entry.output_buffers) == 1:
return entry.output_buffers[0]
return entry.output_buffers

def _create_entry_dict(self):
""" """
Expand Down Expand Up @@ -221,8 +233,11 @@ def clear_graph(self):

def _save_cudagrpah_dot_files(self, entry):
"""Print CUDAGrpah to dot files"""
log_dir = envs.FD_LOG_DIR
if not os.path.exists(log_dir):
os.makedirs(log_dir, exist_ok=True)
if entry.cuda_graph:
entry.cuda_graph.print_to_dot_files(
f"./log/GraphDotFiles/backend{id(self)}_shape{entry.real_shape}",
f"{log_dir}/GraphDotFiles/backend{id(self)}_shape{entry.real_shape}",
1 << 0,
)
2 changes: 1 addition & 1 deletion fastdeploy/plugins/input_processor/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,5 +23,5 @@
def load_input_processor_plugins():
"""load_input_processor_plugins"""
plugins = load_plugins_by_group(group=PLUGINS_GROUP)
assert len(plugins) <= 1, "Most one plugin is allowed to be loaded."
assert len(plugins) == 1, "Only one plugin is allowed to be loaded."
return next(iter(plugins.values()))()
9 changes: 2 additions & 7 deletions fastdeploy/plugins/model_runner/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,19 +14,14 @@
# limitations under the License.
"""

from fastdeploy.plugins.utils import load_plugins_by_group, plugins_loaded
from fastdeploy.plugins.utils import load_plugins_by_group

# use for modle runner
PLUGINS_GROUP = "fastdeploy.model_runner_plugins"


def load_model_runner_plugins():
"""load_model_runner_plugins"""
global plugins_loaded
if plugins_loaded:
return
plugins_loaded = True

plugins = load_plugins_by_group(group=PLUGINS_GROUP)
assert len(plugins) <= 1, "Most one plugin is allowed to be loaded."
assert len(plugins) == 1, "Only one plugin is allowed to be loaded."
return next(iter(plugins.values()))()
12 changes: 9 additions & 3 deletions fastdeploy/plugins/reasoning_parser/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,14 +14,20 @@
# limitations under the License.
"""

from fastdeploy.plugins.utils import load_plugins_by_group
from fastdeploy.plugins.utils import load_plugins_by_group, plugins_loaded

# make sure one process only loads plugins once
PLUGINS_GROUP = "fastdeploy.reasoning_parser_plugins"


def load_reasoning_parser_plugins():
"""load_reasoning_parser_plugins"""
global plugins_loaded
if plugins_loaded:
return
plugins_loaded = True

plugins = load_plugins_by_group(group=PLUGINS_GROUP)
assert len(plugins) <= 1, "Most one plugin is allowed to be loaded."
return next(iter(plugins.values()))()
# general plugins, we only need to execute the loaded functions
for func in plugins.values():
func()
4 changes: 4 additions & 0 deletions fastdeploy/reasoning/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,8 @@
# limitations under the License.
"""

from fastdeploy.plugins import load_reasoning_parser_plugins

from .abs_reasoning_parsers import ReasoningParser, ReasoningParserManager
from .ernie_vl_reasoning_parsers import ErnieVLReasoningParser
from .ernie_x1_reasoning_parsers import ErnieX1ReasoningParser
Expand All @@ -26,3 +28,5 @@
"Qwen3ReasoningParser",
"ErnieX1ReasoningParser",
]

load_reasoning_parser_plugins()
17 changes: 8 additions & 9 deletions fastdeploy/reasoning/ernie_x1_reasoning_parsers.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,6 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
#
from collections.abc import Sequence
from typing import Tuple, Union

from fastdeploy.entrypoints.openai.protocol import ChatCompletionRequest, DeltaMessage
from fastdeploy.reasoning import ReasoningParser, ReasoningParserManager

#
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
Expand All @@ -20,6 +12,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""

from collections.abc import Sequence
from typing import Tuple, Union

from fastdeploy.entrypoints.openai.protocol import ChatCompletionRequest, DeltaMessage
from fastdeploy.reasoning import ReasoningParser, ReasoningParserManager


@ReasoningParserManager.register_module("ernie_x1")
Expand Down
22 changes: 17 additions & 5 deletions fastdeploy/worker/worker_process.py
Original file line number Diff line number Diff line change
Expand Up @@ -248,6 +248,11 @@ def init_health_status(self) -> None:
create=False,
)

def _broadcast_model_weights_signal(self, src: int, group) -> int:
model_weights_signal_tensor = paddle.full(shape=[1], fill_value=self.model_weights_signal[0], dtype="int32")
paddle.distributed.broadcast(model_weights_signal_tensor, src=src, group=group)
return model_weights_signal_tensor.item()

def event_loop_normal(self) -> None:
"""Main event loop for Paddle Distributed Workers.
TODO(gongshaotian): support remote calling of functions that control worker.
Expand All @@ -257,15 +262,19 @@ def event_loop_normal(self) -> None:
req_ids = []
num_running_requests = 0

self.model_weights_signal = paddle.zeros([1], dtype=paddle.int32)
self.model_weights_signal = np.zeros([1], dtype=np.int32)
while True:
if self.local_rank % self.parallel_config.tensor_parallel_size == 0:
if self.model_weights_status.value[0] != 0:
self.model_weights_signal[0] = int(self.model_weights_status.value[0])
if self.fd_config.load_config.dynamic_load_weight and self.parallel_config.enable_expert_parallel:
paddle.distributed.broadcast(self.model_weights_signal, src=0, group=self.parallel_config.ep_group)
if self.fd_config.load_config.dynamic_load_weight:
paddle.distributed.broadcast(self.model_weights_signal, src=0, group=self.parallel_config.tp_group)
self.model_weights_signal[0] = self._broadcast_model_weights_signal(
src=0, group=self.parallel_config.ep_group
)
if self.fd_config.load_config.dynamic_load_weight and self.parallel_config.tensor_parallel_size > 1:
self.model_weights_signal[0] = self._broadcast_model_weights_signal(
src=0, group=self.parallel_config.tp_group
)

self.insert_step = False
req_dicts = None
Expand Down Expand Up @@ -294,7 +303,9 @@ def event_loop_normal(self) -> None:
else:
paddle.distributed.barrier(self.parallel_config.tp_group)
if self.model_weights_signal[0] != 0:
logger.info(f"Rank: {self.local_rank} has updated parameters.")
logger.info(
f"Rank: {self.local_rank} to update or clear parameters, signal is {self.model_weights_signal[0]}, [-1:clear, 1:update]"
)
from fastdeploy.rl.dynamic_weight_manager import (
DynamicWeightManager,
)
Expand All @@ -307,6 +318,7 @@ def event_loop_normal(self) -> None:
self.parallel_config.engine_worker_queue_port,
)
self.model_weights_signal[0] = 0
logger.info(f"Rank: {self.local_rank} has updated or cleared parameters.")

if self.exist_task_signal.value[0] == 1 or self.task_queue.read_finish_flag.get() == 1:
logger.info(f"Rank: {self.local_rank} Detected new requests.")
Expand Down
Loading