Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion seq2seq/evaluator/evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ def evaluate(self, model, data):
match = 0
total = 0

device = None if torch.cuda.is_available() else -1
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
batch_iterator = torchtext.data.BucketIterator(
dataset=data, batch_size=self.batch_size,
sort=True, sort_key=lambda x: len(x.src),
Expand Down
13 changes: 5 additions & 8 deletions seq2seq/trainer/supervised_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,8 +46,6 @@ def __init__(self, expt_dir='experiment', loss=NLLLoss(), batch_size=64,
os.makedirs(self.expt_dir)
self.batch_size = batch_size

self.logger = logging.getLogger(__name__)

def _train_batch(self, input_variable, input_lengths, target_variable, model, teacher_forcing_ratio):
loss = self.loss
# Forward propagation
Expand All @@ -67,12 +65,11 @@ def _train_batch(self, input_variable, input_lengths, target_variable, model, te

def _train_epoches(self, data, model, n_epochs, start_epoch, start_step,
dev_data=None, teacher_forcing_ratio=0):
log = self.logger

print_loss_total = 0 # Reset every print_every
epoch_loss_total = 0 # Reset every epoch

device = None if torch.cuda.is_available() else -1
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
batch_iterator = torchtext.data.BucketIterator(
dataset=data, batch_size=self.batch_size,
sort=False, sort_within_batch=True,
Expand All @@ -85,7 +82,7 @@ def _train_epoches(self, data, model, n_epochs, start_epoch, start_step,
step = start_step
step_elapsed = 0
for epoch in range(start_epoch, n_epochs + 1):
log.debug("Epoch: %d, Step: %d" % (epoch, step))
logging.debug("Epoch: %d, Step: %d" % (epoch, step))

batch_generator = batch_iterator.__iter__()
# consuming seen batches from previous training
Expand Down Expand Up @@ -113,7 +110,7 @@ def _train_epoches(self, data, model, n_epochs, start_epoch, start_step,
step / total_steps * 100,
self.loss.name,
print_loss_avg)
log.info(log_msg)
logging.info(log_msg)

# Checkpoint
if step % self.checkpoint_every == 0 or step == total_steps:
Expand All @@ -136,7 +133,7 @@ def _train_epoches(self, data, model, n_epochs, start_epoch, start_step,
else:
self.optimizer.update(epoch_loss_avg, epoch)

log.info(log_msg)
logging.info(log_msg)

def train(self, model, data, num_epochs=5,
resume=False, dev_data=None,
Expand Down Expand Up @@ -179,7 +176,7 @@ def train(self, model, data, num_epochs=5,
optimizer = Optimizer(optim.Adam(model.parameters()), max_grad_norm=5)
self.optimizer = optimizer

self.logger.info("Optimizer: %s, Scheduler: %s" % (self.optimizer.optimizer, self.optimizer.scheduler))
logging.info("Optimizer: %s, Scheduler: %s" % (self.optimizer.optimizer, self.optimizer.scheduler))

self._train_epoches(data, model, num_epochs,
start_epoch, step, dev_data=dev_data,
Expand Down