Skip to content

[Bug]: Running Jamba FP8 crashes with cutlass_moe_mm #24094

@Josephasafg

Description

@Josephasafg

Your current environment

The output of python collect_env.py
Collecting environment information...
==============================
        System Info
==============================
OS                           : Ubuntu 22.04.5 LTS (x86_64)
GCC version                  : (Ubuntu 11.4.0-1ubuntu1~22.04.2) 11.4.0
Clang version                : Could not collect
CMake version                : version 4.1.0
Libc version                 : glibc-2.35

==============================
       PyTorch Info
==============================
PyTorch version              : 2.7.1+cu128
Is debug build               : False
CUDA used to build PyTorch   : 12.8
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.12.11 (main, Jun  4 2025, 08:56:18) [GCC 11.4.0] (64-bit runtime)
Python platform              : Linux-6.6.72+-x86_64-with-glibc2.35

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.8.93
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration :
GPU 0: NVIDIA H200
GPU 1: NVIDIA H200
GPU 2: NVIDIA H200
GPU 3: NVIDIA H200
GPU 4: NVIDIA H200
GPU 5: NVIDIA H200
GPU 6: NVIDIA H200
GPU 7: NVIDIA H200

Nvidia driver version        : 570.124.06
cuDNN version                : Could not collect
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        52 bits physical, 57 bits virtual
Byte Order:                           Little Endian
CPU(s):                               224
On-line CPU(s) list:                  0-223
Vendor ID:                            GenuineIntel
Model name:                           INTEL(R) XEON(R) PLATINUM 8581C CPU @ 2.10GHz
CPU family:                           6
Model:                                207
Thread(s) per core:                   2
Core(s) per socket:                   56
Socket(s):                            2
Stepping:                             2
BogoMIPS:                             4200.00
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx_vnni avx512_bf16 wbnoinvd arat avx512vbmi umip avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid cldemote movdiri movdir64b fsrm md_clear serialize tsxldtrk amx_bf16 avx512_fp16 amx_tile amx_int8 arch_capabilities
Hypervisor vendor:                    KVM
Virtualization type:                  full
L1d cache:                            5.3 MiB (112 instances)
L1i cache:                            3.5 MiB (112 instances)
L2 cache:                             224 MiB (112 instances)
L3 cache:                             520 MiB (2 instances)
NUMA node(s):                         2
NUMA node0 CPU(s):                    0-55,112-167
NUMA node1 CPU(s):                    56-111,168-223
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.3.14
[pip3] nvidia-cuda-cupti-cu12==12.8.57
[pip3] nvidia-cuda-nvrtc-cu12==12.8.61
[pip3] nvidia-cuda-runtime-cu12==12.8.57
[pip3] nvidia-cudnn-cu12==9.7.1.26
[pip3] nvidia-cufft-cu12==11.3.3.41
[pip3] nvidia-cufile-cu12==1.13.0.11
[pip3] nvidia-curand-cu12==10.3.9.55
[pip3] nvidia-cusolver-cu12==11.7.2.55
[pip3] nvidia-cusparse-cu12==12.5.7.53
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.27.7
[pip3] nvidia-nvjitlink-cu12==12.8.61
[pip3] nvidia-nvtx-cu12==12.8.55
[pip3] pyzmq==27.0.2
[pip3] torch==2.7.1+cu128
[pip3] torchaudio==2.7.1+cu128
[pip3] torchvision==0.22.1+cu128
[pip3] transformers==4.55.3
[pip3] triton==3.3.1
[conda] Could not collect

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
Neuron SDK Version           : N/A
vLLM Version                 : v0.10.1
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
  	GPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	NIC0	NIC1	NIC2	NIC3	NIC4	NIC5	NIC6	NIC7	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	 X 	NV18	NV18	NV18	NV18	NV18	NV18	NV18	PIX	PIX	NODE	NODE	SYS	SYS	SYS	SYS	0-55,112-167	0		N/A
GPU1	NV18	 X 	NV18	NV18	NV18	NV18	NV18	NV18	PIX	PIX	NODE	NODE	SYS	SYS	SYS	SYS	0-55,112-167	0		N/A
GPU2	NV18	NV18	 X 	NV18	NV18	NV18	NV18	NV18	NODE	NODE	PIX	PIX	SYS	SYS	SYS	SYS	0-55,112-167	0		N/A
GPU3	NV18	NV18	NV18	 X 	NV18	NV18	NV18	NV18	NODE	NODE	PIX	PIX	SYS	SYS	SYS	SYS	0-55,112-167	0		N/A
GPU4	NV18	NV18	NV18	NV18	 X 	NV18	NV18	NV18	SYS	SYS	SYS	SYS	PIX	PIX	NODE	NODE	56-111,168-223	1		N/A
GPU5	NV18	NV18	NV18	NV18	NV18	 X 	NV18	NV18	SYS	SYS	SYS	SYS	PIX	PIX	NODE	NODE	56-111,168-223	1		N/A
GPU6	NV18	NV18	NV18	NV18	NV18	NV18	 X 	NV18	SYS	SYS	SYS	SYS	NODE	NODE	PIX	PIX	56-111,168-223	1		N/A
GPU7	NV18	NV18	NV18	NV18	NV18	NV18	NV18	 X 	SYS	SYS	SYS	SYS	NODE	NODE	PIX	PIX	56-111,168-223	1		N/A
NIC0	PIX	PIX	NODE	NODE	SYS	SYS	SYS	SYS	 X 	PIX	NODE	NODE	SYS	SYS	SYS	SYS
NIC1	PIX	PIX	NODE	NODE	SYS	SYS	SYS	SYS	PIX	 X 	NODE	NODE	SYS	SYS	SYS	SYS
NIC2	NODE	NODE	PIX	PIX	SYS	SYS	SYS	SYS	NODE	NODE	 X 	PIX	SYS	SYS	SYS	SYS
NIC3	NODE	NODE	PIX	PIX	SYS	SYS	SYS	SYS	NODE	NODE	PIX	 X 	SYS	SYS	SYS	SYS
NIC4	SYS	SYS	SYS	SYS	PIX	PIX	NODE	NODE	SYS	SYS	SYS	SYS	 X 	PIX	NODE	NODE
NIC5	SYS	SYS	SYS	SYS	PIX	PIX	NODE	NODE	SYS	SYS	SYS	SYS	PIX	 X 	NODE	NODE
NIC6	SYS	SYS	SYS	SYS	NODE	NODE	PIX	PIX	SYS	SYS	SYS	SYS	NODE	NODE	 X 	PIX
NIC7	SYS	SYS	SYS	SYS	NODE	NODE	PIX	PIX	SYS	SYS	SYS	SYS	NODE	NODE	PIX	 X

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2
  NIC3: mlx5_3
  NIC4: mlx5_4
  NIC5: mlx5_5
  NIC6: mlx5_6
  NIC7: mlx5_7

==============================
     Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_REQUIRE_CUDA=cuda>=12.8 brand=unknown,driver>=470,driver<471 brand=grid,driver>=470,driver<471 brand=tesla,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=vapps,driver>=470,driver<471 brand=vpc,driver>=470,driver<471 brand=vcs,driver>=470,driver<471 brand=vws,driver>=470,driver<471 brand=cloudgaming,driver>=470,driver<471 brand=unknown,driver>=535,driver<536 brand=grid,driver>=535,driver<536 brand=tesla,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=vapps,driver>=535,driver<536 brand=vpc,driver>=535,driver<536 brand=vcs,driver>=535,driver<536 brand=vws,driver>=535,driver<536 brand=cloudgaming,driver>=535,driver<536 brand=unknown,driver>=550,driver<551 brand=grid,driver>=550,driver<551 brand=tesla,driver>=550,driver<551 brand=nvidia,driver>=550,driver<551 brand=quadro,driver>=550,driver<551 brand=quadrortx,driver>=550,driver<551 brand=nvidiartx,driver>=550,driver<551 brand=vapps,driver>=550,driver<551 brand=vpc,driver>=550,driver<551 brand=vcs,driver>=550,driver<551 brand=vws,driver>=550,driver<551 brand=cloudgaming,driver>=550,driver<551 brand=unknown,driver>=560,driver<561 brand=grid,driver>=560,driver<561 brand=tesla,driver>=560,driver<561 brand=nvidia,driver>=560,driver<561 brand=quadro,driver>=560,driver<561 brand=quadrortx,driver>=560,driver<561 brand=nvidiartx,driver>=560,driver<561 brand=vapps,driver>=560,driver<561 brand=vpc,driver>=560,driver<561 brand=vcs,driver>=560,driver<561 brand=vws,driver>=560,driver<561 brand=cloudgaming,driver>=560,driver<561 brand=unknown,driver>=565,driver<566 brand=grid,driver>=565,driver<566 brand=tesla,driver>=565,driver<566 brand=nvidia,driver>=565,driver<566 brand=quadro,driver>=565,driver<566 brand=quadrortx,driver>=565,driver<566 brand=nvidiartx,driver>=565,driver<566 brand=vapps,driver>=565,driver<566 brand=vpc,driver>=565,driver<566 brand=vcs,driver>=565,driver<566 brand=vws,driver>=565,driver<566 brand=cloudgaming,driver>=565,driver<566
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NVIDIA_PRODUCT_NAME=CUDA
VLLM_USAGE_SOURCE=production-docker-image
CUDA_VERSION=12.8.1
LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/nvidia/nccl/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/cuda/lib64
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

When running Jamba Large FP8 version (I suppose it happens on other MOE FP8 models) Im getting an error from cutlass_moe_mm onm high load and reltaively large context (30K input) on v0.10.1.X

VLLM_TRACE_FUNCTION=1 \
CUDA_LAUNCH_BLOCKING=1 \
VLLM_USE_V1=0 \
 vllm bench latency \
   --model ai21labs/AI21-Jamba-Mini-1.7-FP8  \
   --input-len 31500  \
    --output-len 128 \
    --batch-size 1 \
    --num-iters-warmup 3 \
    --num-iters 3

This is the trace log

Warmup iterations:  33% 1/3 [01:01<02:02, 61.18s/it]
[rank0]: Traceback (most recent call last):
[rank0]:   File "/usr/local/bin/vllm", line 10, in <module>
[rank0]:     sys.exit(main())
[rank0]:              ^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/cli/main.py", line 54, in main
[rank0]:     args.dispatch_function(args)
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/cli/benchmark/latency.py", line 21, in cmd
[rank0]:     main(args)
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/benchmarks/latency.py", line 142, in main
[rank0]:     run_to_completion(profile_dir=None)
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/benchmarks/latency.py", line 135, in run_to_completion
[rank0]:     llm_generate()
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/benchmarks/latency.py", line 115, in llm_generate
[rank0]:     llm.generate(dummy_prompts,
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/utils/__init__.py", line 1557, in inner
[rank0]:     return fn(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/llm.py", line 497, in generate
[rank0]:     outputs = self._run_engine(use_tqdm=use_tqdm)
[rank0]:               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/llm.py", line 1715, in _run_engine
[rank0]:     step_outputs = self.llm_engine.step()
[rank0]:                    ^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/engine/llm_engine.py", line 1221, in step
[rank0]:     outputs = self.model_executor.execute_model(
[rank0]:               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/executor/executor_base.py", line 147, in execute_model
[rank0]:     output = self.collective_rpc("execute_model",
[rank0]:              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/executor/uniproc_executor.py", line 58, in collective_rpc
[rank0]:     answer = run_method(self.driver_worker, method, args, kwargs)
[rank0]:              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/utils/__init__.py", line 3007, in run_method
[rank0]:     return func(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/worker/worker_base.py", line 417, in execute_model
[rank0]:     output = self.model_runner.execute_model(
[rank0]:              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/torch/utils/_contextlib.py", line 116, in decorate_context
[rank0]:     return func(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/worker/model_runner.py", line 1701, in execute_model
[rank0]:     hidden_or_intermediate_states = model_executable(
[rank0]:                                     ^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl
[rank0]:     return self._call_impl(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1762, in _call_impl
[rank0]:     return forward_call(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/models/jamba.py", line 539, in forward
[rank0]:     hidden_states = self.model(input_ids, positions, mamba_cache_params,
[rank0]:                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/compilation/decorators.py", line 206, in __call__
[rank0]:     return self.forward(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/models/jamba.py", line 364, in forward
[rank0]:     hidden_states, residual = layer(
[rank0]:                               ^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl
[rank0]:     return self._call_impl(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1762, in _call_impl
[rank0]:     return forward_call(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/models/jamba.py", line 162, in forward
[rank0]:     hidden_states = self.feed_forward(hidden_states)
[rank0]:                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl
[rank0]:     return self._call_impl(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1762, in _call_impl
[rank0]:     return forward_call(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/models/jamba.py", line 89, in forward
[rank0]:     hidden_states = self.experts(hidden_states, router_logits)
[rank0]:                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl
[rank0]:     return self._call_impl(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1762, in _call_impl
[rank0]:     return forward_call(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/layers/fused_moe/layer.py", line 1545, in forward
[rank0]:     return torch.ops.vllm.moe_forward(
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/torch/_ops.py", line 1158, in __call__
[rank0]:     return self._op(*args, **(kwargs or {}))
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/layers/fused_moe/layer.py", line 1738, in moe_forward
[rank0]:     return self.forward_impl(hidden_states, router_logits)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/layers/fused_moe/layer.py", line 1648, in forward_impl
[rank0]:     final_hidden_states = self.quant_method.apply(
[rank0]:                           ^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py", line 786, in apply
[rank0]:     return cutlass_moe_fp8(
[rank0]:            ^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/layers/fused_moe/cutlass_moe.py", line 456, in cutlass_moe_fp8
[rank0]:     return fn(
[rank0]:            ^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl
[rank0]:     return self._call_impl(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1762, in _call_impl
[rank0]:     return forward_call(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/layers/fused_moe/modular_kernel.py", line 768, in forward
[rank0]:     fused_out = self._maybe_chunk_fused_experts(
[rank0]:                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/layers/fused_moe/modular_kernel.py", line 567, in _maybe_chunk_fused_experts
[rank0]:     return self._do_fused_experts(
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/layers/fused_moe/modular_kernel.py", line 512, in _do_fused_experts
[rank0]:     self.fused_experts.apply(
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/layers/fused_moe/cutlass_moe.py", line 272, in apply
[rank0]:     run_cutlass_moe_fp8(
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/layers/fused_moe/cutlass_moe.py", line 191, in run_cutlass_moe_fp8
[rank0]:     ops.cutlass_moe_mm(c1, a1q, w1, a1q_scale, w1_scale, expert_offsets,
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/vllm/_custom_ops.py", line 901, in cutlass_moe_mm
[rank0]:     return torch.ops._C.cutlass_moe_mm(out_tensors, a_tensors, b_tensors,
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/usr/local/lib/python3.12/dist-packages/torch/_ops.py", line 1158, in __call__
[rank0]:     return self._op(*args, **(kwargs or {}))
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: RuntimeError: Error Internal
[rank0]:[W902 04:32:14.227102500 ProcessGroupNCCL.cpp:1479]

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions