Skip to content

[Article request] Chalice with TF Serving payload format #30

@austinmw

Description

@austinmw

Hi, I've followed along with your Medium article successfully. I've also done this sagemaker tutorial: tensorflow_bring_your_own/tensorflow_bring_your_own.ipynb. The format required to send an image to the TF Serving RESTful endpoint in this tutorial is:

import json
import numpy as np
from PIL import Image
img_path = './img.jpg'
image = np.asarray(Image.open(img_path)).astype(np.float32)
image = np.expand_dims(image, axis=0)
data = {'instances': image}
data = json.dumps({k: _ndarray_to_list(v) for k, v in six.iteritems(data)}) # or sagemaker.predictor.json_serializer
request_args = {}
request_args['Body'] = data
request_args['EndpointName'] = 'my-endpoint-name'
request_args['ContentType'] = 'application/json'
request_args['Accept'] = 'application/json'
response = sagemaker_session.sagemaker_runtime_client.invoke_endpoint(**request_args)

I'm struggling to figure out how I can send either a jpg or image as numpy array to Chalice in order to preprocess the image into this format required for TF serving. Any chance you might be able to help?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions