|
| 1 | +# Copyright 2018 DeepMind Technologies Limited. All rights reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +"""Example running WPO on continuous control tasks.""" |
| 16 | + |
| 17 | +from absl import flags |
| 18 | +from acme import specs |
| 19 | +from acme.agents.jax import wpo |
| 20 | +from acme.agents.jax.wpo import types as wpo_types |
| 21 | +import helpers |
| 22 | +from absl import app |
| 23 | +from acme.jax import experiments |
| 24 | +from acme.utils import lp_utils |
| 25 | +import launchpad as lp |
| 26 | + |
| 27 | +RUN_DISTRIBUTED = flags.DEFINE_bool( |
| 28 | + 'run_distributed', True, 'Should an agent be executed in a distributed ' |
| 29 | + 'way. If False, will run single-threaded.') |
| 30 | +ENV_NAME = flags.DEFINE_string( |
| 31 | + 'env_name', 'gym:HalfCheetah-v2', |
| 32 | + 'What environment to run on, in the format {gym|control}:{task}, ' |
| 33 | + 'where "control" refers to the DM control suite. DM Control tasks are ' |
| 34 | + 'further split into {domain_name}:{task_name}.') |
| 35 | +SEED = flags.DEFINE_integer('seed', 0, 'Random seed.') |
| 36 | +NUM_STEPS = flags.DEFINE_integer( |
| 37 | + 'num_steps', 1_000_000, |
| 38 | + 'Number of environment steps to run the experiment for.') |
| 39 | +EVAL_EVERY = flags.DEFINE_integer( |
| 40 | + 'eval_every', 50_000, |
| 41 | + 'How often (in actor environment steps) to run evaluation episodes.') |
| 42 | +EVAL_EPISODES = flags.DEFINE_integer( |
| 43 | + 'evaluation_episodes', 10, |
| 44 | + 'Number of evaluation episodes to run periodically.') |
| 45 | + |
| 46 | + |
| 47 | +def build_experiment_config(): |
| 48 | + """Builds MPO experiment config which can be executed in different ways.""" |
| 49 | + suite, task = ENV_NAME.value.split(':', 1) |
| 50 | + |
| 51 | + def network_factory(spec: specs.EnvironmentSpec) -> wpo.WPONetworks: |
| 52 | + return wpo.make_control_networks( |
| 53 | + spec, |
| 54 | + policy_layer_sizes=(256, 256, 256), |
| 55 | + critic_layer_sizes=(256, 256, 256), |
| 56 | + policy_init_scale=0.5) |
| 57 | + |
| 58 | + # Configure and construct the agent builder. |
| 59 | + config = wpo.WPOConfig( |
| 60 | + policy_loss_config=wpo_types.GaussianPolicyLossConfig(epsilon_mean=0.01), |
| 61 | + samples_per_insert=64, |
| 62 | + learning_rate=3e-4, |
| 63 | + experience_type=wpo_types.FromTransitions(n_step=5), |
| 64 | + dual_learning_rate=0.0) # Turn off dual learning. |
| 65 | + agent_builder = wpo.WPOBuilder(config, sgd_steps_per_learner_step=1) |
| 66 | + |
| 67 | + return experiments.ExperimentConfig( |
| 68 | + builder=agent_builder, |
| 69 | + environment_factory=lambda _: helpers.make_environment(suite, task), |
| 70 | + network_factory=network_factory, |
| 71 | + seed=SEED.value, |
| 72 | + max_num_actor_steps=NUM_STEPS.value) |
| 73 | + |
| 74 | + |
| 75 | +def main(_): |
| 76 | + config = build_experiment_config() |
| 77 | + if RUN_DISTRIBUTED.value: |
| 78 | + program = experiments.make_distributed_experiment( |
| 79 | + experiment=config, num_actors=4) |
| 80 | + lp.launch(program, xm_resources=lp_utils.make_xm_docker_resources(program)) |
| 81 | + else: |
| 82 | + experiments.run_experiment( |
| 83 | + experiment=config, |
| 84 | + eval_every=EVAL_EVERY.value, |
| 85 | + num_eval_episodes=EVAL_EPISODES.value) |
| 86 | + |
| 87 | + |
| 88 | +if __name__ == '__main__': |
| 89 | + app.run(main) |
0 commit comments