@@ -148,7 +148,7 @@ cdef class Lindemann(PDepKineticsModel):
148
148
`efficiencies` A dict associating chemical species with associated efficiencies
149
149
`comment` Information about the model (e.g. its source)
150
150
=================== ========================================================
151
-
151
+
152
152
"""
153
153
154
154
def __init__ (self , arrheniusHigh = None , arrheniusLow = None , Tmin = None , Tmax = None , Pmin = None , Pmax = None ,
@@ -255,7 +255,7 @@ cdef class Troe(PDepKineticsModel):
255
255
`efficiencies` A dict associating chemical species with associated efficiencies
256
256
`comment` Information about the model (e.g. its source)
257
257
=================== ========================================================
258
-
258
+
259
259
"""
260
260
261
261
def __init__ (self , arrheniusHigh = None , arrheniusLow = None , alpha = 0.0 , T3 = None , T1 = None , T2 = None , Tmin = None ,
@@ -347,7 +347,7 @@ cdef class Troe(PDepKineticsModel):
347
347
d = 0.14
348
348
n = 0.75 - 1.27 * log10(Fcent)
349
349
c = - 0.4 - 0.67 * log10(Fcent)
350
- F = 10.0 ** (log10(Fcent) / (1 + ((log10(Pr) + c) / (n - d * (log10(Pr)))) ** 2 ))
350
+ F = 10.0 ** (log10(Fcent) / (1 + ((log10(Pr) + c) / (n - d * (log10(Pr) + c ))) ** 2 ))
351
351
352
352
return kinf * (Pr / (1 + Pr)) * F
353
353
@@ -397,7 +397,7 @@ cdef class Troe(PDepKineticsModel):
397
397
T3 = self .T3.value_si
398
398
T1 = self .T1.value_si
399
399
if self .T2 is None :
400
- ct_reaction.falloff = ct.TroeFalloff(params = [A, T3, T1])
400
+ ct_reaction.falloff = ct.TroeFalloff(params = [A, T3, T1])
401
401
else :
402
402
T2 = self .T2.value_si
403
403
ct_reaction.falloff = ct.TroeFalloff(params = [A, T3, T1, T2])
0 commit comments